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Visual recognition of objects is an impressively difficult

problem that biological systems solve effortlessly. We

consider two aspects of this ability. First, is the recog-

nition of all objects accomplished by either a single sys-

tem or multiple, domain-specific systems? Behavioral,

neuropsychological and neuroimaging data indicate

that a single system is sufficient for the recognition of

all objects at all levels. Second, how does such a system

‘tune’ itself to the constraints imposed by recognition

at different levels of specificity? Evidence indicates that

the task demands and learning that arise from different

forms of feedback determine which computational rou-

tines are recruited automatically in object recognition.

The truck driver slammed on the brakes, not expecting the
road to be full of monkeys.

[Reported during a lecture by our colleague, Philip
Lieberman.]

Rarely does one expect to see a road full of monkeys. Yet
these objects, although surprising when out of context, are
easily interpreted. Such is the remarkable nature of object
perception by humans, within seconds of viewing an
unexpected scene, that we know it contains many animals,
that they are monkeys and, possibly, that they are
macaques and that one is named Curious George. Our
object-perception abilities are noteworthy not only for
their speed and accuracy, but for their flexibility – we
recognize objects at multiple levels of specificity in the
absence of any prior expectations. How the brain solves
this problem has been a subject of increasing interest for
the past 20 years.

At the heart of the problem are two questions. First,
what processes are recruited across recognition tasks? One
possibility is that a single system is sufficient to recognize
all objects at all levels of specificity. Another possibility
is that multiple domain-specific systems are deployed,
depending on object category and task demands. Second,
what are the origins of our object-recognition abilities? Are
they innate or acquired through experience? To answer
these questions we begin by considering two dimensions
along which systems for object recognition have been
characterized.

Recognition of different object categories

One taxonomy for object recognition relies on the fact that
objects can be placed into distinct categories based on their
visual appearance [1,2]. Objects that are perceptually
similar, that share similar shape or surface properties, can
be grouped together at either the basic-level [1] or,

depending on experience, at the entry-level [2]. For
example, a primatologist would distinguish between
vervets and macaques, whereas most of us would treat
both as monkeys. Given the existence of distinct visual
categories, many researchers have posited the existence of
multiple recognition systems, each of which support the
recognition of one or more visual categories. The most
popular distinction has been that there are separate
systems for faces and non-face objects [3–8]. This
dichotomy is based on intuitions such as the inherent
social significance of faces and the difficulty of discriminat-
ing individual faces, as well as the following evidence:
(1) A visual preference for face-like stimuli in neonates

[9,10]
(2) Face-specific effects in behavioral measures of

visual processing [11,12]
(3) Face-selective neurons [13], brain areas [5,14] and

neural signals [6]
(4) Dissociations between face and object recognition in

brain-injured patients [3,4,7,15]

Although these points make a seemingly convincing
case for separate systems for faces and objects, they are
based on the questionable assumption that there are
characteristics and modes of processing that are exclusive
to faces and face recognition. Alternatively, these proper-
ties may be ones that faces happen to have, but they could
also be true for other object categories. Thus, if the
characteristics and computational mechanisms involved
are not face specific, it is possible that a single system
might support recognition of both face and non-face
objects. Indeed, when factors other than the visual
category are considered, such as the specificity of the
recognition judgment and the degree of expertise with that
category, faces and objects elicit similar patterns of
behavioral and neural responses (Box 1).

Recognition at multiple levels

Although current evidence does not appear to support
separate recognition systems for faces and objects, the
analysis in Box 1 does indicate a second possible taxonomy
for object recognition. Different behavioral and neural
responses are observed when we recognize objects at more
specific levels compared with the basic level (e.g. either
‘Curious George’ or ‘macaque’ as opposed to ‘monkey’)
[16–18] (Fig. 1). Thus, many researchers have suggested
that we have one recognition system for more specific-level
judgments and another for basic-level judgments [19–22].
The crucial idea is that the former is accomplished using
specific features of an image to discriminate between
objects whereas the latter is accomplished by mappingCorresponding author: Michael J. Tarr (michael_tarr@brown.edu).
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Box 1. Is face recognition ‘special’?

Although many studies in the literature cite behavioral or neural disso-

ciations between face and object recognition as evidence for separate

processing systems, apparent specializations in the processing of faces

may be attributed to the default level at which faces are recognized –

individual identity. Putatively ‘face-specific’ effects might actually be

elicitedbyfactors thatarenotexclusiveto faces.Forexample, recognizing

objectsatamorespecific level recruits thesameneuralsubstrates thatare

recruitedbyfacerecognition[a,b].This indicatesthatperceptualexpertise

leadstoashift in thedefault levelof recognitionwithinanexpert’sdomain

[c].Thus,birderscannothelpbut recognize individualspeciesofbirdsand

dog-showjudgescannothelpbutrecognize individualswithinabreed [c].

In this context, face recognition may be considered a case of perceptual

expertise acquired byalmost everyone [d]. With theonsetof expertise the

processing necessary for more specific-level categorization becomes

automatic. These processes are recruited when objects are recognized

intentionally at a more specific level [a,b] or in a domain of expertise.

Thus, the dissociations between faces and objects observed in behavior,

neuropsychology and neuroimaging might be reinterpreted as disso-

ciations in the level of recognition and the degree of expertise between

two object categories.

Evidence to support this interpretation comes from behavioral studies

inwhichdog-showjudgessometimesexhibitasimilar inversioneffect for

recognizingfacesanddogs[e].Moreover,subjectstrainedtobeexpertsat

recognizing Greebles (see Fig. 2, main text) often exhibit similar con-

figural effects when recognizing faces and Greebles [f–h]. These

behavioral commonalities are reflected in the neural coding of faces

and objects because comparable patterns of focal neural activity are

obtained in the, so-called, fusiform face area (FFA) of Greeble experts

during recognition of either faces or Greebles [i]. Likewise, the FFA area

of bird or car experts is activated when recognizing birds or cars,

respectively [j] (see Fig. I). Recordings of event-related potentials reveal

that bird and dog experts have an enhanced N170 occipitotemporal

component for their domain of expertise relative to non-expert domains

[k]. Similarly, Greeble experts (but not novices) exhibit a delay and

enhancement of the N170 when recognizing inverted faces or Greebles

(left lateralized for Greebles) [l]. Last, prosopagnosics patients who have

impaired ability to recognize faces have similar deficits in subordinate-

level recognitionofeverydayobjectsandGreebles[m] (butsee [n]).These

dataprovideevidencethat thesamerecognitionsystemis recruited when

recognizing either faces or objects at more specific levels, often

automatized by expertise.
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Fig. I. Examples of individual fMRI scans of experts for four different object categories. Each fMRI image shows the activation associated with viewing items from the

depicted object category that was significantly over and above the activation associated with viewing common objects. The slice angles and activation thresholds for

each image are not equated because these data were collected across different studies. However, in each case there is a significant cluster of activation in the right fusi-

form gyrus – sometimes referred to as the ‘Fusiform Face Area’ or ‘FFA’. These studies demonstrate that visual expertise produces a pattern of neural activity for non-

face objects in the domain of expertise that is quite similar to that obtained for faces. fMRI scans adapted from [47] and [50].
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individual objects that are similarly shaped into a single
representation, a visual category. Accomplishing a many-
to-one mapping requires that the individual shape and
surface details needed for specific-level recognition be
filtered out or ignored, typically by using a coarse
description of object shape provided by, for example,
three-dimensional parts [19], skeletal models [23] and
qualitative features [24]. Thus, macaques and vervet
monkeys would share similar visual descriptions at the
basic level, but different descriptions at the species level.
This example illustrates that a crucial variable for basic-
level recognition is the shape of the object [1]. However, if
two objects that are nominally members of the same basic-
level category have very different shapes they will be
categorized visually as different objects. For example,
although sparrows and penguins are both birds at the
basic level, penguins are first recognized as penguins, not
birds, because of their untypical bird shape. This distinc-
tion motivates the idea of the entry level [2], a term that is
meant to capture the default level of visual categorization
of everyday objects.

How do we evaluate whether the ability to recognize
objects at multiple levels is supported by one or more
recognition systems? One approach is to identify beha-
vioral markers for each putative system and test whether
these patterns of behavior are consistent across different
levels of recognition. For example, putative basic-level and
specific-level systems are often distinguished by their
degree of viewpoint sensitivity [18–20,22]. Perhaps the
strongest prediction is that basic-level recognition will be
invariant across many transformations of the object. More
specifically, changing the appearance of an object by, for
example, rotation, translation and altering the lighting
will not change the description of the object as long as the
post-change image presents the features seen previously
[19,25,26]. This analysis is consistent with the many
models of entry-level recognition that posit equivalent
recognition speed and accuracy over either three-
dimensional rotation of an object or observer movement
in three-dimensions, but slowed and less accurate per-
formance for specific-level categorization [18–20,22].

Alternatively, models that assume a single system for
recognition at all levels of specificity posit that recognition
speed and accuracy vary with the difficulty of a task but
remain viewpoint-dependent when there is some change in
the appearance of the object [27–29].

Testing these alternatives has been problematic
because there is little consensus regarding appropriate
stimuli and tasks [30,31]. What emerges is that viewpoint
dependence or invariance is not a dichotomous dimension
– indeed, every time one recognizes an object from even a
slightly changed viewpoint there is some cost in perform-
ance (Box 2). More importantly, the magnitude of this cost
seems to be modulated by the specificity of the recognition
judgment in a continuous manner; the more similar an
object is to potential incorrect targets, the higher the cost
for changes in viewpoint [27–29]. Consequently, it is
difficult to say where the boundary is between the two
putative systems. Other apparent dissociations between
basic-level and specific-level recognition also appear to be
along a continuum and patterns of behavior that are
diagnostic for one system hold for tasks associated with the
other [32,33]. Thus, there is little evidence to indicate that
systems for basic-level versus specific-level recognition can
be separated. This is not to say that there are not
significant differences in the manner in which basic-level
and specific-level judgments are accomplished, but these
differences might reflect a variety of perceptual processes
in the toolkit available to a single, flexible system (Box 2)
[29,34,35].

How do we learn to see objects and faces?

How does the visual recognition system ‘tune’ itself to use
this toolkit of processes according to the constraints
imposed by recognition at different levels of specificity?
One possibility is that we are born prewired to handle the
different demands implicit in learning and recognizing all
objects at all levels [36]. This suggestion relies on innate
mechanisms, which implies a modular system [5,8,37]. A
less extreme stance posits that the process of object
recognition interacts with our biases, intentions and
experience in a nontrivial manner (i.e. more than raw

Fig. 1. Multiple levels of description. We are able to recognize objects at different levels of specificity depending on experience and task demands. For example, macaques

and vervet monkeys would share similar visual descriptions at the basic (entry) level, but different descriptions at the species or subordinate level. Particular monkeys, such

as Curious Georgee, are recognized at the individual level.
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experience is required) [38,39]. For example, there are
conditions under which semantic knowledge and task
constraints affect recognition behavior [40]. In other
words, we might recognize objects using more than just
the information we extract from the scene (bottom-up
processing). Specifically, top-down processes, such as the
knowledge of an object’s function, might play a role in
determining which processes are deployed. Also, objects
are not, at least by default, all recognized at the same level
of visual granularity [35]. Typically, observers must learn
to recognize objects at more subordinate levels of analysis.
For example, our ability to recognize faces of a given race is
partially a product of experience [41] and observers do not
automatically distinguish between instances of a visual

category without extensive practice [42–44]. Thus,
throughout their lifetimes people constantly tune their
visual-recognition abilities [35,45].

What can we learn?

All of us can group even the most oddly shaped novel
objects into visual categories. At the same time, barring
brain injury or disease, we all come to recognize faces by
default at the individual level. Evidence indicates that,
with interest from a hobby or a profession, we can also
learn to discriminate instances of non-face objects at finer
levels. For example, car buffs can discuss subtleties
between different models of Porsches [46], birders can
identify a myriad of wrens and finches [46,47], dog-show

Box 2. Is object recognition ever viewpoint invariant?

In structural-description theories of object recognition, it is often

hypothesized that object recognition is invariant over changes in either

object orientation or observer viewpoint [a,b]. At the same time, view-

based and image-based theories predict that object recognition is

dependent on the appearance of the object as viewed originally [c,d].

Testsofthesetwoalternativesvary,butthestandardmanipulationalmost

always presents an observer with an object from one view and measures

their speed and accuracy when recognizing the same object from a new

view. This basic paradigm consistently reveals systematic costs for

changes in viewpoint of novel two-dimensional shapes [c], novel three-

dimensional objects [e] and familiar, common objects rotated in either

two[f] or three [g] dimensions (Fig. I).Notonly does recognizing anobject

fromanewviewtake longerandbecomelessaccurate,butthemagnitude

of this effect generally corresponds with the degree of viewpoint change

(i.e. larger rotations produce proportionally poorer performance) [c,e–g].

Although observations of viewpoint-dependent recognition behavior

are undeniable, there have been attempts to describe such findings as

limited cases that do not extend to entry-level or ‘everyday’ recognition

(presumed to be viewpoint invariant) [h]. However, common objects

recognized at the entry level show viewpoint-dependent effects [f,g].

Moreover, the recognition of novel three-dimensional objects that are

qualitatively different in shape (thereby mapping into different entry-

level categories) is also viewpoint dependent [i,j]. All things considered,

there are only a few instances where object recognition is viewpoint

invariant. Such cases are a product of a particular concatenation of

stimuli and tasks that bias observers to hone in on local, unique features

that are diagnostic for individual identity [j]. Even then, this strategy is

relatively unstable because including additional diagnostic features in

each object prompts observers to shift to viewpoint-dependent pro-

cessing [l]. Such results demonstrate that there is no ‘hard’ boundary

between class-level and specific-level recognition mechanisms. Rather,

there is a continuum of effects modulated by the level of recognition, the

inherent similarity of the stimuli, and the task, which is perhaps best

explained by a single recognition mechanism that is sensitive to these

factors [k,l].
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Fig. I. A viewpoint-dependent object representation of an elephant. Because

individual views will only generalize over a limited range of positions, the

representation must include multiple views of the same object, each showing

different visible features.
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judges can tell a prize Schnauzer from an also-ran [47,48],
radiologists can diagnose a diseased lung from an x-ray
and laboratory subjects can learn the individual names of
‘Greebles’ (see Fig. 2) [43,44].

Such examples indicate that visual expertise is not
limited to faces and that we can learn to discriminate
between individual items in a wide variety of visually
homogeneous objects. Interestingly, the ability to acquire
visual expertise might have evolved as a specific response
to the social need to identify individual faces. Thus,
although individual-level recognition is not exclusive to
faces, it might still be optimized for face recognition in
particular and, as such, be constrained in the types of
object forms that can be individuated. This logic is
inherent in the argument that Greebles (and dogs, cars,
birds, etc.) elicit face-like behavioral and neural patterns
in experts because they ‘look like faces’ [8,35]. More
formally, the learning processes that support the acqui-
sition of expertise might be tuned to certain properties that
faces happen to have (but are not face-specific).

To the extent that researchers have ‘pushed the
envelope’ by creating experts with novel stimuli [43,44,49]
or testing experts with previously-learned stimuli [46–48],
the visual recognition system has been revealed to be
remarkably plastic. Accordingly, abilities and patterns of
behavior similar to those observed for faces are often found
for non-face objects. Moreover, we can identify the
properties of faces that are also true for other known
domains of expertise (i.e. define what is meant by ‘looking
like faces’). For example, one common property is that
faces, dogs, cars, birds and Greebles have bilateral sym-
metry. However, only faces and Greebles have a 2–1–1
configuration of parts (eyes–nose–mouth), indicating that
this configural property is not necessary. Similarly,
although faces, dogs and birds are living things, cars
and Greebles are neither living nor do they have surfaces
that look organic. Thus, our recognition system appears to
be capable of learning and recognizing a wide range of

visual categories; although there may be some constraints
on the geometries and images that can be learned, they
appear to be very soft.

How do we learn?

Object recognition encompasses multiple processing
levels, from the categorical to the specific. We have focused
on the processes that support specific-level recognition,
which might be the easiest problem solved by our visual-
recognition systems. Pigeons, primates, people and many
artificial neural-network models of recognition can quite
easily learn specific images of objects. By contrast,
generalizing across such images is much harder [25].

That specific images of objects are readily learned could
be taken as evidence that expertise should not have to be
acquired at all. Representations that support expert
discriminations might be learned in the form of early
visual responses (e.g. the output of sets of receptive fields
[50]). Accordingly, the ability to recognize two images or
configurations of an object as the same object, or recognize
two objects as instances of the same category would need to
be acquired. But, as noted above, this seems contrary to
intuition. We are good at visually categorizing objects even
at a young age [51] and, for the most part, entry-level
recognition defaults to the basic level unless modulated by
expertise [52]. It is acquiring this expertise that seems
hard and, even for faces, takes years of experience [42].
Thus, although learning specific descriptions of images
might be a straightforward consequence of early vision,
this sort of representation does not translate into visual
expertise. The question is why; what is the difference
between learning specific images and discriminating
between individual objects?

Consider that: (i) expert-level recognition for objects
such as faces seems to be robust over noise [52], (ii) experts
can learn new, individual instances rapidly, and (iii) in a
domain of expertise, individual-level recognition is accu-
rate and fast, even when discriminating between similar

Fig. 2. Examples of sixteen Greebles. The individuals in this novel, homogeneous visual category are organized into two ‘genders’ (left and right members of each Greeble

pair) and five ‘families’ (four of which are depicted and identified by the top row of labels). Examples of individual Greeble names are given in the bottom row of labels. The

top row illustrates symmetric Greebles, while the bottom row illustrates asymmetric Greebles.
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objects [53]. By contrast, object representations that are
based on literal images do not generalize to either
degraded or transformed versions. Furthermore, image-
based similarity metrics that allow such generalizations
would introduce new problems, such as confusion between
visually similar exemplars in a visual category. Thus,
expertise is different from simply learning images. Indeed,
visual expertise is somewhat paradoxical because it
seems to recruit specific representations for discriminat-
ing between individuals (indicated by the strong view-
point, lighting and configural dependence of expert-level
recognition [11,12,43,44,48]), but seems quite robust to
transformations.

This characterization of expert-level recognition indi-
cates that we learn object representations that are specific
across some dimensions but flexible across others. In some
ways this is not very different from the challenges faced by
a learner at the basic level. For example, learning to
associate two objects as members of the same category is
similar to learning to associate two configurations of the
same object at different moments in time. Crucially, the
same learning mechanisms might apply: despite vari-
ations in the images, a high degree of visual similarity
between the two targets relative to other known objects
will lead to their association [22,54]. Likewise, because the
same sets of features co-occur across multiple viewings,
they will become more strongly associated with one
another, thereby refining the representation at the con-
figural level [22]. The operation of these and other asso-
ciative mechanisms [55] are unsupervised, that is, they
function without any feedback about the correctness or
validity of the learning that has occurred. However, the
acquisition of expertise requires more than raw experience
– without explicit training or feedback it is unclear
whether one could ever become an ‘expert’ in any domain.

What sort of feedback is needed to become an expert?

No feedback

Can one become a visual expert without feedback? Self-
organizing neural-networks are capable of learning large
numbers of patterns and the relationships between them
without feedback or supervision [56]. Such pattern asso-
ciators are sensitive to the statistical relations within the
dataset. Thus, they can learn to discriminate individual
images of objects and, to some extent, to generalize over

different images of the same object or category. What is
unknown is the extent to which self-organizing systems
can account for expert-level recognition. Self-organizing
object ‘spaces’ form a critical core for further learning [54].
Moreover, intuitively, some sort of supervision or inten-
tional learning is essential to becoming an expert;
although we see hundreds of cars everyday, few of us
become car experts unless we expend the effort and
interest needed to acquire expertise [35,43–45,49].

Implicit feedback

Where does this interest come from? In the case of faces it
might be innate because there is evidence that newborns
prefer to look at facial configurations (eyes, nose, mouth)
over other patterns [10]. It is as if their brains are telling
them to look at (and learn) faces. This preference for face
geometry may be construed as a bias that helps to shape
category learning by directing attention. Learning based
on such biases might be dubbed ‘internally supervised’ in
that although there is no explicit training signal, the
system is directed to attend to some objects at the expense
of others. This idea is consistent with a growing interest in
feedback loops in cortex that seem critical for learning [57].

A second form of implicit feedback is the context in
which an object appears. Expectations might help deter-
mine the accuracy of our recognition judgments. For
example, we may fail to recognize a friend in an
unexpected setting, whereas an expected context might
facilitate identification. At a minimum, the acquisition of
expertise relies on these and other forms of implicit
feedback. There are biases and contexts that help boot-
strap expertise for human faces, a process similar to that of
nonperceptual domains (Box 3). Likewise, interest in a
particular domain (e.g. bird watching) and contextual cues
(e.g. goldfinches almost always appear around a feeder
filled with thistle seed) help us acquire expertise for non-
face objects.

Explicit feedback

Is it possible that interest/biases and context are sufficient
to bootstrap the acquisition of visual expertise? Although
the acquisition of face expertise does not appear to require
an explicit training signal [43], creating visual expertise
in the laboratory requires at least some feedback of
observers’ recognition performance (Box 3) [44,45,58].

Box 3. An analogy between language and vision

Our characterization of visual expertise is analogous to popular

accounts of the acquisition of language [a]. For example, one classic

problem was defined by Quine [b]: ‘If one is walking with a native

speaker of a language different from one’s own and a rabbit runs

across your path and your companion exclaims “Gavagai!”, to what

are they referring?’ The ‘poverty of the stimulus argument’ suggests

that you (and children learning a language) receive little feedback

about the relationship between words and objects, yet you (and they)

learn the correct mappings. One solution is that from birth, specific

biases constrain our hypotheses about the relationship between

words and objects [a]. Such biases, along with context, allow us to

focus on the appropriate features of the environment and map words

to these features without explicit feedback. In Quine’s example, we

may apply two biases: the unknown word is a count noun and that

count nouns apply to object shapes [c]. Thus, ‘Gavagai’ refers to the

object ‘rabbit’ because the learner assumes a label (particularly a

single word) refers to an object’s shape (and hence its identity) and

not a substance or action. Similar constraints may be exerted in

expertise acquisition; we may rely on innate and internally generated

(e.g. hobbies) biases along with context to help bootstrap learning of

new object domains.
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The role of explicit feedback in the acquisition of ‘real-
world’ expertise by, for example, birders, dog show judges
and car buffs is less clear [47–49] (Box 4). However, similar
to the creation of Greeble experts, birders appear to receive
feedback from bird guides, car buffs from the manufac-
turers’ nameplates and owner’s manuals, and dog show
judges from kennel club handbooks. Moreover, face
recognition occurs in social contexts that provide much
more specific feedback relative to almost any other objects
(incorrectly recognizing a goldfinch or a 1965 Mustang has
far fewer consequences than failing to recognize one’s
enemies, friends and offspring).

Concluding remarks

We have argued that all levels of recognition across all
object categories can be supported by a single recognition
system that is ‘tuned’ by task, experience and feedback.
Although it is tempting to ‘divide and conquer’ by
narrowing the domain of explanation to a subset of object
categories or recognition tasks [37], this strategy can lead
to false dichotomies that are better explained as points
along single dimensions. Such is the case for both the face–
object distinction and the specific–basic-level distinction.
Experimental and computational findings point towards a
single, flexible visual recognition system. For example,
Haxby and colleagues [59] report that the representations
of faces and several visual categories in the ventral
temporal cortex are widely distributed and overlapping,
indicating a lack of modularity. We suggest that the case of
visual expertise reveals important characteristics about
the plasticity of this system.
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