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The central problem for cognitive neuroscience is to

describe how cognitive processes arise from brain pro-

cesses. This review summarizes the recent evidence

that synchronous neural oscillations reveal much about

the origin and nature of cognitive processes such as

memory, attention and consciousness. Memory pro-

cesses are most closely related to theta and gamma

rhythms, whereas attention seems closely associated

with alpha and gamma rhythms. Conscious awareness

may arise from synchronous neural oscillations occur-

ring globally throughout the brain rather than from the

locally synchronous oscillations that occur when a sen-

sory area encodes a stimulus. These associations

between the dynamics of the brain and cognitive pro-

cesses indicate progress towards a unified theory of

brain and cognition.

A popular stance in modern cognitive science is that
cognitive processes arise from functionally organized
brain processes [1], hence the discipline of cognitive
neuroscience, which seeks to understand how this comes
about. How can we identify the brain processes closely
associated with cognitive processes and understand how
the former give rise to the latter? Clearly, a first stage is to
describe the functional anatomy of the brain: which areas
show increased activity when a particular cognitive task is
being performed. Informed by modern functional imaging
techniques such as PET and fMRI, we have made an
impressive beginning on this task. But cognitive processes
are not static; they are dynamic. Even the simplest
percept, memory or decision is a process that unfolds in
time [2]. A popular way to think about the relationship
between brain dynamics and cognitive dynamics is to
describe the sequence of brain areas that ‘light up’ during
the various stages in the performance of a cognitive task,
like the sequence of bumpers hit by a pinball shot from its
spring [3–5]. This approach is limited, however, because it
cannot describe in any detail what is going on in those lit-
up areas. Moreover, it doesn’t seem to be able to cope fully
with the emerging view of brain processes as reverberations
of reentrant activity in a complex neural network [6,7]. A
complementary approach that begins with the latter view
is to try to describe how the oscillatory activity of the brain,
as revealed by the electroencephalogram (EEG) and the
magnetoencephalogram (MEG) as well as more invasive
recordings, is related to the dynamics of cognitive

performance (Box 1). There is increasing evidence that
this relationship is revealing, and an increasing theoreti-
cal understanding of how it might come about based on
computational neural models [8–10]. Here I review recent
data and two provocative models from the large literature
linking EEG (and MEG) recordings of the large-scale
oscillatory activity of the brain with the dynamics of the
fundamental cognitive processes of memory, attention,
and consciousness. The goal is to make a case for serious
consideration of such data and models in the effort to
understand the origins and nature of cognition.

There are, of course, limitations to what this approach
can tell us about cognition. These include the relatively
poor spatial resolution of EEG and MEG (although MEG
spatial resolution can approach that of fMRI), the fact that
the dendritic field potentials of the cortical pyramidal
neurons recorded by EEG and MEG constitutes only part
of the brain’s relevant dynamics, the correlative nature of
the associations reported which beg questions of causality,
and various more specialized technical problems such as
volume conduction (EEG) and noise filtering (MEG). In
addition, it is early days in this endeavor, so that models
are not complete; they are simply illustrative of what can
be accomplished within the dynamical approach.

EEG oscillations and cognitive processes

The EEG varies with activity, both in humans and other
animals, and particularly with the sleep-wakefulness
cycle. Moreover, spectral power at various frequencies
(Box 2) changes with age; alpha power increases as
children mature whereas theta and delta power decrease.
These changes are linked to the more general increase in
cognitive competence with maturation, whereas the
reverse changes signal declining mental abilities in old
age [11]. Alpha waves have been apparent in EEG
recordings ever since electroencephalography was
invented by Hans Berger in the 1930s. Classically, because
alpha power was larger with eyes closed than with eyes
open, it was thought that alpha reflected a relaxed,
unoccupied brain. An overall decrease in alpha power
has been linked to increasing demands of attention,
alertness, and task load in general [11]. Theta power, by
contrast, tends to increase in memory tasks, especially
during encoding [8,11,12]. These complementary effects
have been thought to reflect different cognitive operations
occurring in cortico-thalamic circuits: theta for encoding
and alpha for search and retrieval [11]. In what follows I
will discuss more recent data and models that areCorresponding author: Lawrence M. Ward (lward@psych.ubc.ca).
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beginning to flesh out but also to challenge some of these
classical conclusions.

Theta and gamma and memory

Theta in memory encoding

Although theta oscillations are apparent in lower animals
such as rats, they are seldom seen directly in EEG
recordings from humans and it has been difficult to
understand what the classically-observed increases in
theta power meant [13]. Recently, however, intracranial
EEG (iEEG) recordings made from epileptic patients have
revealed strong theta oscillations from many areas of the
human brain [14–15]. In these experiments, periods in
which theta oscillations were apparent were more fre-
quent when patients were navigating through a virtual
maze by memory alone, relative to when they were guided
through the maze by arrow cues. The theta periods were
longer the longer the maze. Theta did not covary, however,
with the time taken to make decisions at choice points;
instead gamma oscillations were more prevalent the
longer the decision time. Thus, theta oscillations are

more closely linked to encoding and retrieval in memory
than they are to other cognitive processes.

Gamma and transient coupling of brain areas

Gamma oscillations too play a role in memory. iEEG
recordings from epileptic patients memorizing words
reveal that during successful memory formation the rhinal
cortex is first coupled to the hippocampus via 40 Hz
gamma oscillations and then decoupled from it [16].
Gamma oscillations have been suggested to be a general
mechanism for accomplishing such transient coupling of
functional brain areas based on evidence of gamma band
coherence across the brain during associative learning
[17]. Moreover, during successful recollection, as opposed
to merely experiencing a feeling of familiarity, there is
greater gamma-band functional connectivity between
frontal and parietal cortex along with more spectral
power in both theta and gamma bands [18]. In this
study, gamma-band activity was observed to be modulated
at the theta rate. This suggests that interactions of gamma
and theta activity might be involved in memory function.

Box 1. Synchronous neural oscillations and the EEG

Oscillators display repeated variations in the level of some output. The

prototype is the regular movements of a pendulum, resulting in a sine

wave of position versus time. Neurons can be described as oscillators in

which the voltage across the cell membrane changes according to two

processes, the fast action potential (or spike) and the slower-varying

post-synaptic potential. FitzHugh [59] recognized this and devised a

mathematical model of the neuron, based on van der Pol’s relaxation

oscillator [60], that describes the global dynamics of all spiking neurons.

This model is commonly used in the theoretical study of networks of

spiking neurons, particularly in the study of the conditions under which

they oscillate and synchronize their activity. Synchronization is

arguably how the brain achieves the large-scale integration of its

many parallel, distributed information-processing activities, allowing

coherent cognition and behaviour [7].

Relaxation oscillators in general, and model neurons based on them

in particular, have remarkable properties, demonstrated by compu-

tational neuroscientists and mathematicians over the past decade,

relevant to how neural networks might achieve cognition. First, because

of the dependence of the triggering of the neural spike on the level of the

post-synaptic potential, a sufficient injection of current into a model

neuron causes the potential to cross the spike threshold (around

250 mV), triggering the spike and resetting the phase of the oscillator

(the phase describes where the neuron is in its oscillatory cycle). Fast

zero-lag phase locking, or synchronization, between two or more spike-

coupled model neurons can be achieved within one or two cycles

through this mechanism [61,62]. This is the process by which pace-

maker cells in the heart remain synchronized. It is one mechanism by

which groups of neurons could attain and maintain synchronization.

Moreover, local excitatory pulse-coupling of model neurons can lead to

global synchronization, and a global inhibitory mechanism can lead to

rapid desynchronization. These properties lead to automatic segre-

gation of synchronously-firing groups of neurons representing stimuli

on the receptors and have been used to model visual pattern processing

[63]. Finally, the great susceptibility to driving by other oscillators,

characteristic of relaxation oscillators and of model neurons based on

them, allows changes in the phase and frequency of oscillations (spikes)

but not in their amplitude, just as observed in real neurons.

Perhaps more important to cognitive neuroscience is the fact that

groups of synchronously firing model neural oscillators can themselves

be modeled as second order oscillators, with the amplitude of the

oscillations depending on the number of individual oscillators in the

group, and frequencies similar to those observed in real brains arising

from the properties of the network [64,65]. It has been argued that

cognitive processes such as memory, attention, decision-making, and

even conscious awareness arise from the computations performed by

such assemblages of synchronously active neurons [66]. Moreover, it

has been shown how the oscillations of electrical activity recorded by

the EEG and the MEG at the scalp could reflect the activities of these

assemblages of synchronously oscillating neurons, in particular cortical

pyramidal neurons [66]. Oscillations at standard EEG/MEG frequencies

such as delta (0.5–3.5 Hz), theta (3.5–7 Hz), alpha (8–13 Hz), beta

(15–25 Hz), and gamma (30–70 Hz), arise spontaneously in simulations

of networks of relaxation oscillator neurons (Figure I)) [65]. Thus, it makes

sense to attempt to relate the electrical oscillations recorded at the

scalp by the EEG and the MEG to the dynamics of cognitive processes

as a step towards uncovering the way in which mind arises from brain.

Figure I. Experimentally-recorded EEG oscillations (a) compared with oscil-

lations from a network of 4500 coupled model neurons: 1500 each of pyrami-

dal, feedforward inhibitory, and feedback inhibitory (b). In both, the faster

oscillations are at the gamma frequency and the modulation of the gamma

oscillations is at the theta frequency (adapted with permission from [65].
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An oscillatory model of short-term memory

Among the models of memory processes that have been
proposed linking neural oscillations to memory processes
(e.g. [19–22]), one in particular describes a close relation-
ship between theta and gamma oscillations arising from
the neural basis of short-term, or working, memory.
Figure 1a illustrates some aspects of this model, which
was constructed by Lisman and Idiart [23]. In the model,
memories are stored in groups of pyramidal neurons firing
in synchrony. The synchronous firing tends to dissipate
with time, however, and needs to be refreshed periodically,

much as a computer monitor screen does. The individual
memories are refreshed at the gamma frequency and the
overall refresh cycle is repeated at the theta frequency. The
model requires that gamma oscillations modulated at the
theta frequency be present in the human brain. Such
oscillations have been recorded from human cortex
(see Box 1, Figure I, [18,23]).

If memories are refreshed at the gamma rate once per
theta cycle, then the number of items that can be held in
short-term memory is approximately the gamma
frequency divided by the theta frequency, or about 40/6,

Box 2. Spectral power and the EEG

The EEG (MEG) records a time series of electrical voltages (magnetic

field strengths) at several sites on the scalp. Sampled at a rate of up to

1000 Hz at up to 256 different scalp sites for up to two hours, the EEG, for

example, could generate a data matrix 7.2 million samples long by 256

sites high, for a total of 1.8432 billion pieces of data. There are many

analysis techniques to try to wrest some understanding from this mass

of data. One of the most useful is spectral power analysis, which allows

us to measure the extent to which the neurons generating the EEG are

oscillating synchronously at various frequencies.

Fourier’s Theorem states that any repeating series of oscillations can

be analysed into a set of the simplest possible oscillations, sine and

cosine waves, of various frequencies and amplitudes. In obtaining the

power spectrum of a time series of EEG samples, the voltage

fluctuations recorded by an EEG electrode from moment to moment

are analysed into various sine wave frequencies. The square of the so-

called Fourier coefficient (the amplitude of the sine or cosine wave at a

particular frequency) at each frequency is called the spectral power of

that frequency, and it represents the amount of energy in the

fluctuations at that frequency. The fluctuations in spectral power at an

EEG frequency with changes in experimental tasks or over time can

reveal relationships between the processing activity of groups of

neurons and cognitive processes, or between separate groups of

neurons at disparate sites in the brain.

Figure I shows some typical EEG power spectra for various electrode

sites (the black dots on the schematic head) over a short time period of a

few seconds; notice the different sites at which the various frequencies

can be recorded. Other techniques, such as digital filtering of the

original time series, can be used to obtain a record of the oscillations

from moment to moment at a particular frequency. The instantaneous

phase and amplitude of such records can be separated and records from

various scalp sites can be juxtaposed over space and time to study the

short- and long-range interactions of groups of neurons.

Figure I. Some idealized power spectra showing peaks at canonical EEG frequencies. Although any of the frequencies can occur at any electrode site, alpha power

modulations are often recorded at posterior sites, theta at frontal sites, and gamma over sensory cortices.
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or,7 memories without loss. This is just the number, 7^ 2,
suggested by Miller as the average short-term memory
capacity [24]. One recent estimate of short-term memory
capacity, however, is somewhat lower, around 3–5 items
[25]. If accepted, this number could present a problem for
the gamma/theta model. This estimate is not universally
accepted, however; in particular it does not refer to items
held in memory but rather to processing capacity [25].
Nonetheless, the model needs to be able to accommodate
variations in short-term memory capacity with task
factors and individual differences. As theta can vary at
least over the range 3.5 Hz to 7 Hz and gamma over the
range 30 Hz to 70 Hz, a fairly broad range of capacities can
be accommodated by the model, from around 3 or 4 items to
nearly 20 items. It remains to be shown, however, that
either theta or gamma frequencies (or both) vary appro-
priately with the same factors, so that the quotient
gamma/theta equals the particular capacity found empiri-
cally in a particular situation.

The model can also account for how short-term memory
could function in the Sternberg memory scanning task
[26]. In this task, experimental subjects are given a set of
items to remember, say the letters ‘d’, ‘g’, and ‘z’, and then,
after a short delay, are asked to say whether or not a probe
item, say ‘a’, is among the items in the memory set. Time to
respond in this task typically increases linearly with the
number of items in the memory set (Figure 1b). The model
not only accounted for the linear increases with memory
set size of the mean, variance and skewness of response
times, but also for the faster responding for items most
recently entered into the memory set when the list-probe
delay is short. An experiment in which subjects performed
the memory-scanning task while listening to a train of
auditory clicks provides additional support [27]. A pre-
vious study had demonstrated that the presentation rate
of such clicks tends to determine the frequency of the
gamma oscillation [28], thus theoretically influencing the
rate at which short-term memories could be scanned.
Memory scanning times showed the predicted modu-
lations as a function of the click rate, confirming the

importance of a ‘gamma-clocked’ scanning process. More-
over, both iEEG and MEG have revealed evidence that
theta power increases during the performance of the
Sternberg task, more so the greater the memory load.
Interestingly, the MEG study found that theta power in
the frontal cortex increased during all phases, encoding,
retention and scanning [29], whereas the iEEG study
found an increase in theta power only during encoding and
retention, and a decrease during scanning [30]. Because
different neurons were monitored in the two studies, in
particular the iEEG electrodes were distributed in grids
over various regions of cortical surface, these results
indicate that theta oscillations might play different roles in
different cortical areas. One possibility is that several
different memory processes interact by phase locking their
theta (and other) rhythms to communicate results and
commands. This is supported by another iEEG study that
found increased phase locking (but decreased theta power)
in the theta and alpha frequency bands between various,
even distant, sites in the brain during a difficult working
memory task, suggestive of the interactions of a central
executive process with an occipital visual scratch pad, an
articulatory loop, and a limbic monitor [31].

There remain challenges to the gamma/theta model of
short-term memory both in terms of developing the model
to account for additional empirical facts about short-term
memory (alternative models can account for the basic
Sternberg data and may do better with other memory facts
[32]), and also in terms of the functional anatomy of the
brain regions associated with short-term memory, such as
frontal and temporal areas. The gamma/theta model,
however, does show that it is theoretically possible to bring
brain oscillatory processes into close correspondence with
dynamic memory processes.

Alpha and gamma and attention

Attention is a dynamic process. The attention ‘spotlight’
typically moves from one location in space to another over
a period of less than a second to a few seconds, like the
spotlight at a variety show. Very general dynamical models

Figure 1. (a) Cartoon of some aspects of Lisman and Idiart’s [23] model of short-term memory, including a representation of how the model could function during the Stern-

berg memory scanning task. Notice the blending of the gamma and theta oscillations. (b Representation of a typical result in the Sternberg memory scanning task: the reac-

tion time (RT) for whether a probe letter is in the memory set increases linearly as the number of letters in the set increases, similarly for both ‘no’ and ‘yes’ responses,

although the line for ‘no’ responses is typically above that for ‘yes’ responses.
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of this process have been proposed [33], and much is known
about the attention orienting process on the scale of
hundreds of milliseconds [34]. The cyclic organization of
infants’ attention at around 0.5 Hz to 2 Hz is closely
related to how efficiently they process information and
possibly to intelligence [35]. Now links are beginning to
emerge between the dynamical mechanisms postulated by
attention researchers and the large-scale oscillations of
the brain. Just as theta and gamma appear to be important
rhythms for memory processes, so alpha and gamma
appear to be prominent in attention.

Alpha and attentional suppression

First, and in contrast to the earlier notion that alpha
synchronization indexes ‘cortical idling’, it is becoming
apparent that alpha oscillations indicate that attention is
actively suppressing cortical activity related to distractors
as a part of the process of focusing attention on important
targets. For example, alpha power increases with memory
load in the Sternberg memory-scanning task, reflecting
the increases in the need to suppress distraction [36].
Moreover, when attention is directed internally towards
mental imagery, alpha power at attention-relevant scalp
sites is greater than during externally-directed, infor-
mation-intake tasks, reflecting suppression of external
input during the imagery task [37]. Also in this study,
when external task load increased, alpha power increased,
reflecting the need to suppress competing information
sources.

Changes in alpha power can also anticipate attentional
demands, as when a cue indicating an upcoming auditory
stimulus induced increased alpha power over parieto-
occipital (visual) cortex compared with when the cue
indicated an upcoming visual stimulus [38,39]. In purely
visual tasks, such changes occur precisely over visual
cortical areas where neural activity representing distrac-
tors in the visual field is likely to occur [40]. Interestingly,
induced alpha power decreased over the entire scalp
,300–700 ms after attended visual stimuli appeared in
comparison with when unattended stimuli appeared,
whereas beta power (,16 Hz) increased around 600 ms
after the stimulus occurred [41]. The alpha decrease was
around the time that gamma power increased, possibly
representing temporal binding of visual features [42],
suggesting that gamma synchronization for feature bind-
ing might require alpha desynchronization.

Gamma and attentional processing

Gamma oscillations in general are associated with
processing of attended stimuli, with increased induced
gamma power occurring ,250–300 ms after an attended-
stimulus presentation in a variety of paradigms, particu-
larly in the visual modality [43]. It has been proposed [44]
that suppression of gamma synchronization associated
with the second of two targets in a rapid serial visual
presentation task is responsible for its significantly lower
frequency of detection when presented within ,500 ms of
the first target, called the ‘attentional blink’. [45] The idea
is that the even earlier evoked-gamma synchronization
(,100 ms post-target) that should be triggered by the
second target is suppressed by the ongoing processing of

the first target, resulting in a failure to induce the later
gamma oscillations that allow the second target to be
perceived and remembered.

A model of attentional entrainment

Several models of the dynamics of attention consistent
with the modulations of alpha and gamma oscillations just
described have been proposed [46–48]. All of these models
describe hypothetical neural dynamics that accomplish
attentional tasks such as preparation, orienting, feature
binding, filtering, and so forth, postulating various
synchronous neural oscillatory processes as necessary to
the intercommunication of the neuron groups. Because of
its dynamical nature, however, I wish to focus here on a
model that describes how attentional oscillations can be
entrained by external stimuli. Large and Jones’s oscil-
latory model [49] is illustrated in Figure 2. Attentional
effort, or resource, is assumed to occur in oscillatory
pulses, distributed in time by a simple phase oscillator
whose period and phase can be entrained by rhythmical
external stimuli such as music. When not entrained the
phase and period drift around, possibly at an average
frequency of ,0.5 to 2 Hz, and the focus widens. In the
presence of external rhythmical stimuli, however, period
and phase become entrained to the rhythm, and focus
narrows to the emphasized points in time. The conse-
quence of this focus on specific time points is that stimuli
that occur when expected are processed more effectively,
whereas those that occur at unexpected times suffer
processing deficits [49–51]. Importantly, under such
conditions alpha oscillations are phase-locked to the
occurrences of the entraining stimuli, even when they
are omitted, indicating that attentional resources are
being mustered for those specific processing moments [52].

Figure 2. Cartoon of Large and Jones’s [49] theory of oscillatory attention (based

on [50]). The ‘hills’ at the bottom represent pulses of attentional resource concen-

tration, which are distributed in time according to a phase oscillator, whose period

and phase can become entrained to rhythmical external stimuli (represented by

vertical black bars). When the attentional oscillator is not entrained, attentional

pulses are broad (large period), representing a relatively temporally unfocused

state. They become narrower (more focused in time) when the oscillator is

entrained, and drift again when the external stimuli cease. Performance is best

when target stimuli occur at expected times (peaks of the attentional pulses).
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Gamma and consciousness

Crick and Koch suggested over a decade ago that
synchronous neural firing at the gamma frequency
might be the neural correlate of visual awareness [53].
Since then several important studies have reported
correlations between conscious awareness and synchro-
nous neural activity at various frequencies. In one of these,
the EEG was recorded while subjects viewed an ambig-
uous visual stimulus that could be perceived as either a
face or as a meaningless shape [54]. When subjects
reported seeing a face, phase synchronization at the
gamma frequency occurred across widely-separated
brain areas; this synchronization did not appear when a
meaningless pattern was reported. In a different context,
awareness of the signaling properties of a stimulus in an
associative learning experiment was correlated with long-
range synchrony at the gamma frequency [55]. Finally,
changes in conscious awareness of one or the other of two
binocularly-rivaling visual stimuli are accompanied by a
change in the synchrony of the firing of the neurons
representing the stimuli. There is widespread coherence
between the MEG at various non-sensory brain sites and
the MEG of sensory neurons responding to a stimulus that
is currently in consciousness, whereas there is no such
coherence for stimuli present on the retina but currently
not in consciousness (‘suppressed’ in terms of binocular
rivalry) [56]. Coherence is related to the square of the
correlation coefficient between two time series, in this case
of MEG measurements. This finding led Edelman and
Tononi [57,58] to suggest that the neural basis for
consciousness is what they called a ‘dynamic core’ of
synchronous firing occurring globally across many brain
areas, whereas the locally synchronous firings evoked by
external stimuli are unconscious unless integrated into
the dynamic core.

Synchronous neural oscillations and cognitive science

The research I have discussed supports the idea that the
neural oscillations revealed by the EEG and the MEG are
closely related to dynamic processes of cognition. They are
consistent with the idea that fundamental cognitive
processes arise from the synchronous activity of neurons
in the brain. Moreover, specific oscillations can be
identified with particular cognitive processes: theta and
gamma rhythms with memory encoding and retrieval,
alpha and gamma rhythms with attentional suppression
and focusing, and global synchronization at the gamma
frequency with consciousness (see Box 3 for future
research questions). These associations, in turn, promote
the effort to develop dynamical models that unify the
details of the time evolution of cognitive processes with
those of the underlying neural processes. Such models
both provide a complementary perspective on cognition to
the more traditional statical models, and represent
progress beyond those models in our understanding of
cognition.
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